Google Gemini
Google Gemini Pack.#
This Integration is part of theSupported versions
Supported Cortex XSOAR versions: 6.10.0 and later.
#
Google Gemini IntegrationThis integration provides access to Google Gemini's large language models for AI-powered analysis and chat capabilities in Cortex XSOAR.
#
Configure GoogleGemini in Cortex XSOAR- Navigate to Settings > Integrations > Servers & Services.
- Search for Google Gemini.
- Click Add instance to create and configure a new integration instance.
#
Instance Configuration ParametersParameter | Description | Required |
---|---|---|
Server URL | The base URL for the Gemini API (default: https://generativelanguage.googleapis.com) | True |
API Key | Your Google AI API key with Generative Language API access | True |
Model | Select a Gemini model from the dropdown | True |
Max Tokens | Maximum number of tokens in the response (default: 1024) | False |
Temperature | Controls randomness in responses (0.0-1.0) | False |
Top P | Nucleus sampling parameter | False |
Top K | Top-k sampling parameter | False |
Trust any certificate (not secure) | Whether to ignore SSL certificate verification | False |
Use system proxy settings | Whether to use system proxy configuration | False |
#
Supported ModelsThe integration supports various Gemini models including:
Stable Models:
- gemini-2.0-flash
- gemini-2.0-flash-lite
- gemini-1.5-flash
- gemini-1.5-flash-8b
- gemini-1.5-pro
Preview Models:
- gemini-2.5-flash-preview-05-20
- gemini-2.5-pro-preview-06-05
- gemini-2.0-flash-preview-image-generation
Audio/TTS Models:
- gemini-2.5-flash-preview-native-audio-dialog
- gemini-2.5-flash-exp-native-audio-thinking-dialog
- gemini-2.5-flash-preview-tts
- gemini-2.5-pro-preview-tts
Specialized Models:
- text-embedding-004 (for embeddings)
- models/embedding-001 (for embeddings)
- models/aqa (for attributed question-answering)
Note: You can also use the freetext model field to specify newer models not in the dropdown list.
#
CommandsYou can execute these commands from the CLI, as part of an automation, or in a playbook. After you successfully execute a command, a DBot message appears in the War Room with the command details.
#
google-gemini-send-messageSend a prompt to Google Gemini and receive an AI-generated response.
#
Base Commandgoogle-gemini-send-message
#
InputArgument Name | Description | Required |
---|---|---|
prompt | The prompt or question to send to the AI model | Required |
model | Override the instance default model for this specific request | Optional |
history | Conversation history in JSON format for maintaining context across multiple interactions | Optional |
save_conversation | Whether to automatically save and retrieve conversation history (default: false) | Optional |
#
Context OutputPath | Type | Description |
---|---|---|
GoogleGemini.Chat.Prompt | String | The original prompt sent to the model |
GoogleGemini.Chat.Response | String | The AI model's response |
GoogleGemini.Chat.Model | String | The model used for generation |
GoogleGemini.Chat.Temperature | Number | The temperature parameter used for response generation |
GoogleGemini.Chat.History | Array | Complete conversation history (when save_conversation=true) |
GoogleGemini.Chat.ConversationId | String | A unique identifier, used to identify the chat session |
#
Command Examples!google-gemini-send-message prompt="What is artificial intelligence?"
!google-gemini-send-message prompt="Analyze this suspicious email for potential threats" model="gemini-1.5-pro"
!google-gemini-send-message prompt="Continue our previous discussion" history='[{"role": "user", "parts": [{"text": "Hello"}]}, {"role": "model", "parts": [{"text": "Hi there! How can I help you?"}]}]'
!google-gemini-send-message prompt="What are the next investigation steps?" save_conversation=true
#
Conversation History ManagementWhen save_conversation=true
, the integration:
- Automatically retrieves existing conversation history from context
- Uses the last exchange (user + model response) to provide context for the current request
- Saves the complete updated conversation history to
GoogleGemini.Chat.History
- Allows analysts to maintain conversation continuity without manually managing JSON history
#
Human Readable OutputThe command returns the AI model's response as human-readable output in the War Room.
#
Setup Instructions- Obtain API Key: Visit Google AI Studio to create an API key
- Configure Integration: Add a new GoogleGemini integration instance with your API key
- Test Connection: Use the Test button to verify connectivity
- Start Using: Execute the
google-gemini-send-message
command for AI interactions
#
Troubleshooting- API Key Issues: Ensure your API key has access to the Generative Language API
- Network Connectivity: Verify your XSOAR instance can reach https://generativelanguage.googleapis.com
- Model Availability: Check that the specified model is available in your region
- Rate Limits: Review usage quotas and rate limits for your API key
- Unsupported Models: The integration will warn but attempt to use models not in the official list